CHAPTER 2

Neyman—Pearson theory

2.1 Introduction

Much of contemporary statistical practice consists of using the
methods of hypothesis testing, estimation, and confidence intervals
in order to represent and interpret the evidence in a given set of
observations. These same methods are used for other purposes as
well, but here we are concerned only with their role in interpreting
observed data as evidence, as typified by their conventional use in
research reports in scientific journals. In particular, we are con-
cerned with the rationale behind such applications. The most
widely taught statistical theory, which is based on a paradigm of
Neyman and Pearson (1933), explicitly views these statistical meth-
ods as solutions to problems of a different kind, so that these eviden-
tial applications fall outside the scope of that theory. In this chapter
we describe the Neyman—Pearson theory and look at problems that
arise when its results are used for interpreting data as evidence.

2.2 Neyman-—Pearson statistical theory

At the heart of Neyman—Pearson theory is the problem of testing
two simple hypotheses, which was considered briefly in section 1.8.
In Chapter 1 we examined a rule for interpreting observations X = x
as evidence for one hypothesis vis-a-vis another. Neyman-—-Pearson
theory is not concerned with such interpretations; instead, its
focus is on using the observations to make a choice between the
two hypotheses. In the words of Neyman (1950, p. 258):

The problem of testing a statistical hypothesis occurs when circum-
stances force us to make a choice between two courses of action:
either take step A or take step B. ..

He goes on to explain that he is considering situations when the
desirability of actions A and B depend on the unknown probability
distribution of a random variable X, and our action is to be
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determined by the observed value of X. Action A is preferred if the
distribution belongs to one set of possible distributions for X and B
is preferred if it belongs to another set:

any rule R prescribing that we take action A when the sample point . ..
falls within a specified category of points, and that we take action B in
all other cases, is a test of a statistical hypothesis.

(Neyman, 1950, p.258)

He then lets H denote the set of distributions where action A is
preferred, and H the set where B is preferred.

The choice between the two actions A and B is interpreted as the adop-
tion or the acceptance of one of the hypotheses H or H and the rejection
of the other. Thus, if the application of an adopted rule... leads to
action A, we say that the hypothesis H is accepted (and, therefore H
is rejected). On the other hand, if the application of the rule leads to
action B, we say that the hypothesis H is rejected (and, therefore, the
hypothesis H is accepted). Frequently it is convenient to concentrate
our attention on a particular one of the two hypotheses H and H.
To do so, one of them is called the Aypothesis tested. The outcome of
the test is then reduced to either accepting or rejecting the hypothesis
tested. Plainly it is immaterial which of the two alternatives H and H is
labelled the hypothesis tested. (Neyman, 1950, p.259)

Neyman then warns against interpreting the result of a test to mean
anything except a decision to choose one action or the other:

The terms ‘accepting’ and ‘rejecting’ a statistical hypothesis are very
convenient and are well established. It is important, however, to
keep their exact meaning in mind and to discard various additional
implications which may be suggested by intuition. Thus, to accept a
hypothesis H means only to decide to take action A rather than
action B. This does not mean that we necessarily believe that the
hypothesis H is true. Also if the application... ‘rejects” H, this
means only that the rule prescribes action B and does not imply that
we believe that H is false. (Neyman, 1950, p. 259)

Here Neyman places his theory squarely in the domain of the
second of the physician’s three questions of Chapter 1, “What
should 1 do?. He is careful to deny explicitly that it is intended
to answer the first question, “What do I believe?’, while ignoring
altogether the third question, the one that we are concerned with,
‘How should I interpret this observation as evidence?’.

How are these decision rules to be evaluated? What criteria deter-
mine whether one test is better than another? The view of the
Neyman—Pearson school is that a statistical test procedure should
be evaluated in terms of its error probabilities, i.e. the probability
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of rejecting H when it is true, and the probability of accepting H
when H is true. A good test is one with small error probabilities.
In the simple-versus-simple case these are just the Type I and Type
II error probabilities, & and 3. If two tests have the same a, then the
one with the smaller 8 is the better test. The fundamental lemma of
Neyman and Pearson (1933) shows how, for any fixed value of ¢, to
find the best test, the one with smallest 3. If we use such a test then
we still risk making a Type I error, but we have controlled that risk
at . And we can be sure that any test with a smaller Type II risk
than ours carries a larger Type I risk.

The Neyman—Pearson theory of hypothesis testing, with its
attractive pragmatic focus on minimizing the probabilities of
making errors, provides a powerful paradigm that dominates
contemporary statistical theory. Wald (1939; 1950) made basic
generalizations showing that much of the rest of statistics could be
modelled after the optimal decision-making approach of the
Neyman—Pearson theory of hypothesis testing. For this reason the
general theory is sometimes called the Neyman-Pearson—Wald
theory (e.g. Basu, 1975; Carnap, 1950; Efron, 1986), and it views
the basic subject matter of statistics as a collection of decision-
making problems that are analogous to the hypothesis-testing
problem in that they are formulated in terms of choosing between
alternative actions. In the hypothesis-testing problem there are
only two actions, corresponding to the two hypotheses. In estima-
tion, the actions correspond to values of the parameter being
estimated; the goal is to choose a value that is close to the true
parameter. And in the confidence interval problem the actions
correspond to sets of parameter values, the goal being to choose a
set that contains the true value.

So according to the Neyman—Pearson—Wald formulation, statis-
tics is primarily concerned with using observations to choose from a
specified set of actions, the desirability of the actions being depen-
dent on which probability distribution is generating the observa-
tions. Neyman’s expression for this process is inductive behavior:
‘If a rule R unambiguously prescribes the selection of action for
each possible outcome. .., then it is a rule of inductive behavior’
(Neyman, 1950, p.10). In his view, the generalized Neyman-—
Pearson theory encompasses the whole of statistics:

Scope of Mathematical Statistics. Mathematical statistics is a branch of
the theory of probability. It deals with problems relating to performance
characteristics of rules of inductive behavior based on random experi-
ments. (Neyman, 1950, p. 11)




|
|
B
.\;m@&

38 NEYMAN-PEARSON THEORY

This extravagant view of the scope of Neyman—Pearson theory has
been widely accepted:

In recent years, Statistics has been formulated as the science of decision
making under uncertainty. This formulation represents the culmina-
tion of many years of development and, for the first time, furnishes a
simple and straightforward method of exhibiting the fundamental
aspects of a statistical problem. (Chernoff and Moses, 1959, p. vii)

And it remains fundamental — a recent course announcement for a
basic statistical theory course at my own university (Johns Hopkins)
explained that ‘Statistics is the science of using data to make decisions’.

Neyman—Pearson theory formulates a statistical problem in terms
of choosing from among a specified set of actions. A solution is a
procedure for choosing an action (a ‘rule of inductive behavior’), a
protocol that specifies for every possible value of the random vari-
able X whose probability distribution is under study, what action
is to be taken if that value is observed. A solution to a testing
problem may take the form ‘Choose H, if X >7; otherwise
choose H;’. A solution to an estimation problem might be ‘Estimate
0 by X’ or “... by S (X; — X)*/n.

The basic tenet of Neyman—Pearson theory is that solutions to
statistical problems, that is, statistical procedures, should be
evaluated in terms of their probabilistic properties (‘performance
characteristics’, in Neyman’s words). These properties measure the
expected, or long-run average, performance of the procedures — a
procedure with good probabilistic properties will, if used repeatedly,
give good performance, on average. In the simple-versus-simple
hypothesis-testing problem, procedures are evaluated in terms of
their Type I and Type II error probabilities. An estimation proce-
dure, or estimator, associates with every possible observation x an
estimate #(x) of the unknown parameter. If ¢ denotes this parameter
and X = x is observed, then #(x) is used as an estimate of §. The
probabilistic properties that are most popular for evaluating estima-
tors are the expected error, or bias, E[#(X) — 6], the variance,
var[t(X)], and the expected squared error, E[#(X) — 6]*>. A confi-
dence interval procedure associates with every x an interval,
(¢(x),u(x)) of parameter values, and two key properties are the
probability that the interval will contain the true value of the para-
meter, Pr(£(X) < 6 < u(X)), and the expected width of the interval,
Elu(X) — ¢(X)).

To illustrate the estimation theory we can again consider repeated
independent draws from an urn. If X is the number of white balls in
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ten draws, then to estimate the proportion of white balls in the urn,
6, we might first consider the estimator #(X) = X/10, which
estimates 6 by the proportion of draws that produce white balls.
This estimator is unbiased, E[t)(X) — 6] =0, and its variance and
expected squared error are both equal to 8(1 — 6)/10. An alternative
estimator is #(X) =1, which simply ignores X and estimates 6
to equal % regardless of the value of X. This estimator has a bias,
of course, E[f(X)—6]=1-6. But its variance is small,
var(t,(X)] = 0, and its expected squared error is (3 — 6)%. A third
competitor is #3(X) = (1 — w)t;(X) + 1w, where w = 1/(1 + 10'/?)
or about 0.24. This estimator represents a compromise between ¢,
and 1. Its bias is E[;(X)—60)=w(—0), its variance is
(1 — 6)w?, and its expected squared error is simply @ w)?.

In terms of bias, ¢, is the best of the three estimators; in terms of
the variance ¢, is best; and in terms of the expected squared error,
Figure 2.1 shows that #; is best if € is less than 0.17 or greater
than 0.83, ¢, is best if 0.38 < 8 < 0.62 (but much the worst if 8 is
close to zero or one), while ¢; is best for the remaining values of 6,
0.17 < 8 < 0.38 and 0.62 < 9 < 0.83.

This situation is typical — there is no best procedure. One is best
with respect to one performance measure, but for a different
criterion another procedure is best, while for a third criterion, one
procedure is better for some values of the unknown parameter and
another is better for other values. Here ¢, (X) happens to be the best,
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Figure 2.1 Mean square errors for three estimators of a binomial probability.
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in one sense, among all of the estimators that are unbiased — no
other unbiased estimator has smaller variance at any value of 6.
How good #;(X) is, as measured by its variance or its expected
squared error, 6(1 — 6)/10, depends on the unknown value of 6.
By contrast, the expected squared error of #(X) is (3 w)?, the same
for all @ (Figure 2.1). Now #3(X) is the best of all possible estimators
with respect to an important property, the maximum possible value
of the expected squared error: the use of #(X) ensures that the
expected squared error does not exceed (1 w)?, regardless of the
true value of 6. Every other estimator has some values of 6 at
which the expected squared error exceeds this bound. The estimator
1(X) = L is the best possible estimator if it happens that § = 1 andit
is much better (smaller expected squared error) than either of the
other two if § is very close to 1.

The user must decide whether the properties of #(X), 1,(X), or
t;(X) are more important for his or her particular problem.
Although a procedure may be disfavored because it lacks a property
that is judged to be important (such as unbiasedness or minimizing
the maximum possible mean squared error), neither procedure can
be described as ‘incorrect’ or ‘invalid’. For estimating the prob-
ability of ‘heads’ for a coin in my pocket, on the basis of ten
tosses, I would use #,(X) =% in preference to #; or t;, because I
know that the actual probability is very close to one-half, certainly
between 0.4 and 0.6, and in this range ¢, is much the best estimator
of the three. On the other hand, for estimating the proportion of
white balls in an urn about which I have no prior knowledge,
and #; might both be more attractive than ¢,.

A subtle distinction proves to be critical: the probabilistic proper-
ties that Neyman—Pearson theory uses to evaluate a decision proce-
dure are properties of the procedure, not of its results. For example,
a test procedure might have a Type I error probability of 0.05. This
means that if H; is true then the probability that this test procedure
will reject Hj is only 0.05. It does not mean that if the procedure has
rejected H; then the probability that a Type I error has been com-
mitted is 0.05. The probability, 0.05, refers to the test procedure,
not to an outcome of the procedure. Having rejected H,, we know
that either H; is true and we have committed a Type I error, or
H, is false and we have made the correct decision; but we do not
know which.

Similarly, a 95% confidence interval procedure has probability

0.95 of generating an interval that will contain the true value of
~ the target parameter, say 6. For example, if X;, i=1,2,...,n, are
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independent and identically distributed (i.i.d.) N(6,1) then
(X —1.96/+/n, X + 1.96/+/n) defines a 95% confidence interval pro-
cedure. The interval is random, depending on the random variable
X; it will contain @ if and only if X falls in the interval
(6 —1.96//n,60 + 1.96/+/n), and since X has a N(0,1/n) distribu-
tion the probability that this will occur is 0.95. But after X has
been observed to equal X and we have the specific interval,
(x —1.96/+/n,x + 1.96/+/n), the probability statement no longer
applies — either ¢ is in this interval or it is not, and we do not
know which. Both the interval and the parameter 6 are fixed, not
random. We can say that we used a procedure that generates an
interval containing 6 95% of the time, and that in this instance it
generated the interval (¥ — 1.96/+/n, % + 1.96/1/n). But we cannot
say that the probability that @ is in this interval is 0.95. That this is
not semantic hair-splitting is illustrated by the confidence interval
example in the next section, while Exercise 2.3 gives an example of
a 95% confidence interval that contains all the possible values of 6!

2.3 Evidential interpretation of the results of Neyman—Pearson
decision procedures

Contrary to the views quoted in the preceding section, many statisti-
cal applications in research are not well represented by the Neyman—
Pearson model of choosing between alternative actions. And in
addressing these applications many statisticians explicitly reject
that formulation, instead describing the problems in terms of ‘induc-
tive reasoning’ (Fisher, 1959, p. 109), representing ‘what the data
say’ (Cox, 1958, p.359), finding an ‘index to or measure of weight
of evidence’ (Cornfield, 1966, p. 18), ‘summarization of evidence’
(Cox and Hinkley, 1974, p. 56), etc. Nevertheless, one approach
to such applications employs many of the same statistical tools,
methods, and even concepts as Neyman—Pearson theory. The same
general problem areas are identified — hypothesis testing, estimation,
and confidence intervals — and many of the same tests, estimators,
and confidence interval procedures are used. Moreover, the proce-
dures are evaluated, just as in Neyman—Pearson theory, in terms of
their probabilistic properties — size, power, bias, variance, etc.

In these applications the probabilistic properties not only deter-
mine which procedure will be used, as envisioned by the Neyman—
Pearson theory; after a procedure has been used its properties are
reported alongside the result. Thus in addition to the fact that our
test, when applied to the data observed in this experiment, leads
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us to choose H,, our published report also describes the test’s size
and, sometimes, its power. In addition to the value of the estimate,
we report that the estimator (i.e. the estimation procedure used to
derive this estimate) is unbiased, if it is, and we state the (estimated)
value of its standard error. In addition to describing the confidence
interval that our observations produced, we report the confidence
coefficient, the coverage probability of the procedure that generated
this particular interval.

The reason for reporting not only the result but also the prob-
abilistic properties of the procedure leading to that result is that
the procedure is actually being used, not to choose an action, but
to indicate ‘what the data say’, that is, to interpret the data as
evidence. The probabilistic properties are used to refine and quantify
this interpretation. In these applications, when a test procedure leads
to the rejection of H, it is not really taken to mean that we or anyone
else actually decides to act as if H; were false. Rather ‘reject H,’ is
interpreted as a figure of speech meaning that the data in question
are evidence against H;; and the error probability «, or the two
probabilities o and 3, are interpreted as somehow measuring the
strength of that evidence.

Likewise, although an estimated treatment effect in a published
report of a clinical trial might represent a decision to act as if the
treatment really has that precise effect, it more commonly is inter-
preted to mean that the observations are evidence that the effect
has approximately the size of the estimate, and the standard error
of the estimation procedure is supposed to show how strong the
evidence is, a large standard error indicating that it is weak.

A confidence interval is also commonly given an evidential
interpretation. In fact it is sometimes recommended that not one
but a system of confidence intervals be reported, one for each of
a series of confidence coefficients, such as 80%, 90%, 95%, and
99%. This system is not interpreted as some (very complicated)
action, in the Neyman—Pearson sense. Rather its interpretation is
evidential — it ‘summarizes what the data tell us about 6, given the
model’ (Cox and Hinkley, 1974, p.227).

Such applications and interpretations, although formally outside
the scope of Neyman—Pearson theory, are not entirely unauthor-
ized; one of the leading expositors of the Neyman—Pearson school
acknowledges the use of confidence intervals for ‘indicating what
information is available concerning the unknown parameter’
(Lehmann, 1959, p.4). And Neyman (1976, p. 749) himself wrote
that when the two possible results of a hypothesis test are described
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with reference to a'single hypothesis H, namely (1) reject H and (2)
do not reject H, ‘My own preferred substitute for “do not reject H”
is “no evidence against H is found”’.

For these evidential applications the distinction between a statis-
tical procedure and a result of using that procedure is critical.
Column 1 in Table 2.1 lists some of the basic procedures pertaining
to an unknown parameter . They are defined in terms of a generic
random variable X and are themselves random. Column 2 lists some
of their important probabilistic properties. Column 3 represents the
time when a realized value x of the random variable X is observed,
and column 4 shows the result that is generated by the statistical
procedure when X is observed to take the value x. Finally, column
5 contains examples of statements in which the properties of the
procedures are used for interpreting the observation x as evidence
about 4.

The statements in the second column concern well-defined prob-
abilistic properties of random variables and are subject to rigorous
mathematical verification. The meanings of the statements in the
fifth column are less clear. Yet these statements, and others like
them, are an integral part of today’s dominant statistical method-
ology, which uses tests, estimates, and confidence intervals for
interpreting and representing statistical observations as evidence.
Here is how Pratt (1961) described one evidential interpretation of
confidence intervals:

What has made the confidence interval popular is ‘indicating what
information is available’. Decision problems seem beside this point;
a confidence interval probably contains the parameter, and the con-
fidence coefficient measures how probably. But does it? By the
formal definition, it no longer does, once we insert numerical values
for the endpoints. Then no probability (except 0 or 1) can be attached
to the event that the interval contains the parameter: either it does or it
doesn’t. Unfortunately we don’t know which. We think, and would
like to say, it ‘probably’ does; we can invent something else to say,
but nothing else to think. We can say to an experimenter, ‘A method
yielding true statements with probability .95, when applied to your
experiment, yields the statement that your treatment effect is between
17 and 29, but no conclusion is possible about how probable it is that
your treatment effect is between 17 and 29°. The experimenter, who is
interested not in the method, but in the treatment and this particular
confidence interval, would get cold comfort from that if he believed it.

Thus, although the Neyman—Pearson theory of confidence inter-
vals stops at the fourth column of Table 2.1, typical applications
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© o 2 in scientific investigation and reporting, where the objective is to

3 '5; g o f g represent the evidence in a given set of observations, proceed to
; 2 ,§ x oA R the fifth column.

® % E ,§ % §<§ Is it valid to use Neyman—Pearson theory in this way, interpreting

g g 2 g "é E g the procedures of hypothesis testing, estimation, and confidence

88y % g ;5 £ 8 intervals as techniques for representing ‘what the data say’? For

§ i %’J ° § g : § instance, if a good procedure for testing H; versus H, leads

cLE £EE2E% to acceptance of H,, does this mean that the data are evidence sup-

porting H, over H;? If a good estimation procedure leads to a

w specific estimate, does it mean that the data are evidence that the

§£ parameter lies near that value? If a good confidence interval proce-

T dure leads to the interval (a,b), does it mean that the data are

% iy evidence that the parameter lies between a and 5? And do the

% %s probabilistic properties of the procedures, the error probabilities,

Soon |l standard errors, confidence coefficients, etc., measure the strength

j é\;%: of the evidence? All of these questions have the same simple
answer — no.

We have already seen in section 1.8 that the above evidential inter-
pretation of Neyman—Pearson test results is not valid — a good test,
one whose error probabilities are both very small, can call for

>||< choosing H; when the evidence favors H, and vice versa.

! Randomized tests furnish another example of the problems that
appear when we try to interpret Neyman—Pearson test procedures
as showing ‘what the data say’. Suppose we make five draws from

= an urn in which either (H;) half of the balls are white or (H,)
I ItI) 5@ three-fourths are white, replacing the ball after each draw. Let X
g = EE represent the number of white balls that we observe. If we reject
5 g = g H, whenever X =5 we will have the best (most powerful) test of
o & ) size o =p;(X =5)=1/32, and if we reject whenever X =4 or
S& & ; X =5 we will have the best test of size o = 6/32. If we want the
E Il 2 b= best test having size a = 0.05, we must use a randomized test; it
Z § % 5 calls for rejecting H; whenever X = 5 as well as rejecting sometimes,
9 % =3 @ but not always, when X = 4. Specifically, when X = 4 it rejects 12%
s = bBa of the time. We might carry out such a test as follows: if X = 5, reject

H,; if X =4, choose a random number U between 0 and 1, and, if
U < 0.12, reject Hy; otherwise accept H;. Our test has the desired

2 size a=p|(X =5)+0.12p; (X =4) =0.05, and the fundamental

*4-'; lemma of Neyman and Pearson assures us that there is not a

E’, better one — among all tests that have size 0.05 or less, ours has

B the smallest possible Type II error probability. In particular, ours

§§ has smaller Type II error probability than any non-randomized

a test with o < 0.05.
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But despite its optimality, most statisticians would be reluctant to
use this test in applications where the purpose of the statistical ana-
lysis is to indicate what the observations say about H, vis-a-vis H,.
They properly sense that whatever X = 4 means as evidence, it is not
affected by whether U < 0.12 or not, and to let their assessment of
the evidence depend on this clearly irrelevant event is inappropriate.
The evidence about the unknown proportion of the white balls in the
urn is the same when X = 4 and the test calls for rejecting H; as it is
when X = 4 and the test calls for accepting.

Straightforward evidential interpretation of Neyman—Pearson
confidence intervals is also invalid. This is illustrated in the following
example, which is derived from a famous one of Cox (1958, p. 360).
It concerns an experiment that is conducted in two stages. At the
first stage we simply toss a coin; the outcome of the toss determines
what happens at the second stage. If the coin falls heads then
we observe a random variable X with a N(6,0?) probability dis-
tribution. But if the coin falls tails we observe k& independent
random variables X;, X5, . . ., X, all having the same N(8, o2) distri-
bution. That is, at the second stage we make either one or k£ observa-
tions, depending on the result of the coin toss. The value of o’ is
known and we want a 95% confidence interval for  with short
expected length.

If instead of using a coin toss we choose the sample size, say »,
deliberately, then it is well known that X + 1.965/n!/? represents
the best (shortest expected length) 95% confidence interval pro-
cedure. Thus in our two-stage experiment we might consider
procedure A: if the coin falls heads and X = x is observed, use the
interval x & 1.960; if it falls tails and X7 = xy, ..., X = x; are the
observations, use X =% 1.960/k1/ 2. That is, regardless of which
sample size our coin toss tells us to use, we employ the best 95% con-
fidence interval procedure for that sample size. This is certainly a
reasonable procedure; but we can do better.

When the sample size is determined by a coin toss the best (short-
est expected length) 95% confidence interval depends on the value of
k, the number of observations we make if the coin falls tails. To
make the example concrete we let k = 100. In that case the best
95% confidence interval procedure (B) uses x £ 1.68¢ if the coin
falls heads and x +2.724/10 if it falls tails.

Both 4 and B are valid 95% confidence interval procedures: if the
coin falls heads, the coverage probability of A4 is 0.95 while that of B
is 0.91; if it falls tails then A again covers § with probability 0.95
while B’s probability is 0.99. Thus A’s overall coverage probability
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is $x0.95+1x0.95=0.95 and B’s is the same: 1 x 0.91 +1x
0.99 = 0.95. But the expected width of an interval produced by 4
is 1.960 + 1.960/10 = 2.160, while that of an interval produced by
B is only 1.680 + 2.720/10 = 1.950; B generates intervals that are,
on the average, about 10% shorter. Note that even if we increase
the value of k in procedure A, its expected interval width cannot
be made as small as that produced by B with k = 100.

Although B is the better procedure, if we apply it to the observa-
tions from an experiment for the purpose of indicating what those
observations say about §, then it appears to be misleading in every
instance. When we take only one observation, it seems wrong to
present x & 1.680 as a 95% confidence interval — the confidence
coefficient, 0.95, seems too large. Similarly, when the coin falls
tails and we make k observations, it seems wrong to attach to the
interval X + 2.720/k1/ 2 a confidence coefficient of only 0.95.

Another way to look at this example is to compare the cases when
we have taken 100 observations deliberately and when we have made
this choice of sample size by the toss of a coin. In the first case the
best 95% confidence interval procedure uses X + 1.965/10, while
in the second the best procedure uses x + 2.720/10. Many people
agree that, whatever the evidence concerning @ in the observations
X1, - .» X100, it is unaffected by whether the number of observations
was fixed by considerations of costs, for example, or by a coin toss.
That is, for interpreting a given set of observations as evidence about
0, it does not matter whether they arose in the first case or the
second. If a particular interval is appropriate for showing what the
data say in one case, then it is also appropriate in the other. The
Neyman—Pearson theory leads to different results in two situations
where the evidence is the same, and in applications where the pur-
pose of the statistical analysis is to represent and interpret the
data as evidence, this is unacceptable. '

Problems appear also when Neyman—Pearson estimation theory
is used in applications where the goal is evidential interpretation.
We have seen a simple example of this in section 2.2 — for estimating
the probability of heads on the basis of ten tosses of a coin the
estimator #,(X) =1 is a good one in the Neyman—Pearson sense if
performance is measured in terms of expected squared error. Now
our sample does constitute evidence concerning the probability of
heads, but this estimator, which ignores the sample altogether, in
no sense represents that evidence.

Here is a much less trivial example. Suppose that one colleague
brings me his measurements on the length of butterfly wings in
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Ecuador, another brings her observations on tensile strength of wire
samples, and I have some data of my own showing the weight loss in
laboratory rats on a special diet. If all of the measurements have
normal probability distributions, James and Stein (1961) showed
that the naive procedure which uses the three sample means to esti-
mate their respective parameters can be improved. Specifically, the
naive procedure is not as good as one devised by Stein that uses a
statistic depending on all three means, the butterfly wings, the tensile
strengths, and the rat weights, to estimate the mean length of butter-
fly wings, another statistic depending on all three to estimate the
mean tensile strength, etc. The James—Stein estimation procedure
is better in the sense that the average of the three expected squared
errors is smaller with that procedure than with the naive one, no
matter what the true values of the three parameters are. But for inter-
preting our observations as evidence about butterflies, etc., this esti-
mation procedure makes no sense. Whatever evidence we have about
butterfly wings is contained in the butterfly data. (The likelihood
ratio measuring the relative support for two values of the wing para-
meter depends only on the butterfly data.) It is inappropriate to allow
our assessment of that evidence to depend on irrelevant observations
related to wires and rats. Just as in the Cox confidence interval exam-
ple, we find that the procedure that is better in the Neyman—Pearson
sense of expected or average performance is unsatisfactory as a tool
for interpreting data as evidence, because it leads to different results
in situations where the evidence is the same.

Of course, not all attempts to use Neyman—Pearson methodology
for evidential interpretation of data produce results that are as
obviously unsatisfactory as the examples above. If they did, the
discipline of statistics would look very different than it does today.
In countless applications every day, statistical evidence is inter-
preted, analyzed, and reported in terms of hypothesis tests, esti-
mates, and confidence intervals. Many of these applications seem
to be reasonable and helpful, both to experimenters and to readers
of their research reports, for representing and communicating
‘what the data say’. We will pursue this point in Chapters 3 and 4.

Although Neyman—Pearson test procedures do not have a valid
evidential interpretation in general, there is one interesting excep-
tion. In that special case the interpretation is derived from the law
of likelihood. Suppose it is reported that a test with small error
probabilities, o and 3, has led to the choice of H,. In this situation
it seems reasonable to claim that the report represents evidence
favoring H, over H;, and that the smaller « and J are, the stronger
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the evidence is. The test procedure usually chooses the correct
hypothesis (because o and S are small), and in this instance it has
chosen Hj. Is this not evidence that H, is correct? Is it not right to
presume that what usually happens (i.e. the procedure chooses
correctly) has happened, in the absence of any evidence to the con-
trary? The law of likelihood confirms this judgement. The key here is
that the evidence we are evaluating is not the observation, X = x,
that led to the choice of H,, but simply an indicator showing
which hypothesis was chosen — instead of observing X itself, we
see only Z(X), where Z(x) =2 if x is in the critical region (so
H, is chosen) and Z(x) =1 otherwise (and H, is chosen). Thus
when we observe Z=2 we have the likelihood ratio of
Pr(Z = 2|H,)/Pr(Z = 2|H;) = (1 — B)/« in favor of H, over H;.
That is, according to the law of likelihood, the report ‘A test of
H, versus H, having size « and power 1 — [ led to rejection of H,
in favor of H,’ represents evidence favoring H, by the factor
(1 — B)/a (Barnard, Jenkins, and Winsten, 1962, p.331; see also
Birnbaum, 1977). Note that precisely the same reasoning applies
when we are told that the test has led to the choice of H,, rather
than H,. The report ‘A test of H; versus H, having size « and
power 1 — 3 led to acceptance of H,’ represents evidence favoring
H; by the factor (1 — a)/g. »

That Z = 2 is evidence for H, over H; does not mean that the
observation, X = x, on which the test is based is evidence for H,
over H;. A data reduction has been made, and evidence has been
discarded. That is, although we can give a valid evidential inter-
pretation to the result of a Neyman—Pearson test procedure, that
interpretation does not necessarily represent even crudely the evi-
dence in the original observation X = x. In section 1.7 we observed
X itself and found that some of the values that fell in the critical
region (leading to rejection of H, for H,) were in fact evidence favor-
ing H; over H,. Here we observe only whether X is in the critical
region or not. Our conclusion that when H, is selected we have
evidence in favor of H, over H, refers to the evidence in the limited
information given to us, not to the evidence in the observation
X = x, that caused H, to be selected. Thus, if we are not told the
value of x, but only that it produced the test result Z = 2, say,
then we can give a proper evidential interpretation of this very
limited information (via the likelihood ratio (1 — §)/a). But it is
not a proper evidential interpretation of x.

The hypothesis-testing procedures that are most often used
for interpreting and reporting scientific data are not of the
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Neyman—Pearson variety. Before turning to the more commonly
used test procedures, which are discussed in Chapter 3, we consider
a place in science where Neyman—Pearson theory does play an
important role.

2.4 Neyman—Pearson hypothesis testing in planning experiments:
choosing the sample size

We have observed that Neyman—Pearson tests are not designed for
interpreting statistical evidence, and that their use for that purpose
can lead to serious errors in which observations that are evidence
supporting f, over H, are given the opposite interpretation. Strict
Neyman-Pearson test procedures are in fact rarely used for inter-
preting and reporting scientific data, but they are routinely used in
another important phase of research. When a study or experiment
is being planned, the researcher often uses Neyman—Pearson
theory to determine how many observations will be made. He
models the study as a procedure for choosing between two hypoth-
eses, H; and H,, and specifies the maximum tolerable error
probabilities, @ and 3. Then two objectives, stated in terms of
the Neyman—Pearson hypothesis-testing paradigm, determine the
sample size: ‘We want to be pretty sure (probability 1 —a or
greater) that we will not reject H, when it is true, and also pretty
sure (probability 1 — § or greater) that we will reject H; when H,
is true’.

For any sample size we can choose to test at any size we like, so we
can always accomplish the first objective. But in order to accomplish
the second we must make the sample size large enough.

This approach leads to standard formulas for the number of
observations required. For example, consider the simple case of
independent N(6,0%) observations, where the variance o® is
known from pilot data or from results of previous studies, with
hypotheses H,: 8 =6, and H,: 6 = @; 4+ 6. The usual calculation
shows that the number of observations must be at least

nnp = [(z1-a + 21-p)0/6], 2.1)

where z;_, is the 100(1 — «)th percentile of the standard normal
distribution. Using a sample size n > nyp ensures that a test with
size o will have power of at least 1 — 3: the Type I and Type II
error probabilities will not exceed the specified values, @ and 8.
This approach to determining sample size is often used in studies
whose actual purpose is more accurately described in terms of
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evidence than decisions. The objective is not really to choose
between § = 0, and 8 = 6, + 6, but to generate evidence about 6,
with particular interest in how strongly that evidence supports one
of these two values, 6, and 6, + 6, versus the other. When this is
true, the Neyman—Pearson approach is unsatisfactory. We will
show that in the simple important case of the normal probability
distribution described above, the sample size nyp is too small to
ensure that the researcher has an adequate chance to meet his
actual objectives, and that using the Neyman—Pearson hypothesis-
testing procedure to interpret the data as evidence leads to misinter-
pretation with high frequency. That is, the misinterpretations that
were shown to be possible in section 2.3 are not confined to extreme
or pathological cases, but are common when the sample size is
determined by the ‘usual’ formula. Specifically, we will see that
when « = 0.05 and 5 =0.20 the evidence will be misinterpreted
more than 30% of the time.

The objectives can be restated as “We want to be pretty sure
(probability 1 — « or greater) that we will not find strong evidence
in favor of H, when H, is true, and also pretty sure (probability
1 — 3 or greater) that we will find strong evidence in favor of H,
when H, is true’. Suppose that these are our actual objectives, but
that we use the Neyman—Pearson paradigm, determining our
sample size by equation (2.1).

First, we ask ‘How often will the study produce strong evidence?’.
The results, X = x, will be strong evidence for H, over H; if (and
only if) the likelihood ratio L, /L, is at least k, where k is determined
by the expression ‘strong’ evidence. Now most readers will agree
that, in the canonical urn scheme of section 1.6, the evidence in
favor of the ‘all white’ urn over the ‘half white’ one, when the
number of consecutive white balls observed is two (a likelihood
ratio of 2> = 4) is only weak, but that six consecutive white balls
(a likelihood ratio of 25 = 64) are not just ‘strong’ but ‘quite
strong’ evidence. Thus we will focus on values of £ =8, 16, 32,
corresponding to 3, 4, or 5 white balls in the urn scheme.

The likelihood ratio for H,: 8 = 8, + é versus H,: 8§ = 6, where ¢
is the mean of the normal distribution, equals

exp{[x — (6; + 5/2)]n6/02},

so that we have strong evidence for H, when we have observations x
for which this quantity exceeds &, that is, for which

n'2(x — 6,) /o > n'/?6/20 + oln(k) /6n'/2.
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Table 2.2 Probabilities of undesirable results when n is chosen so that
a=0.05 for $=0.20,0.05: (a) finding strong evidence in favor of false
hypothesis; (b) failing to find strong evidence in favor of true hypothesis

(a) (v)
Pri(Ly/L, > k) Pry(Ly/Ly <k)
k £ =020 B =0.05 £ =0.20 B =0.05
8 0.019 0.011 0.342 0.156
16 0.009 0.006 0.449 0.212
32 0.004 0.003 0.560 0.277

If the sample size is the value nyp given in expression (2.1), then the
right-hand side of this inequality equals c¢/2 + In(k)/c, where
€= z]_q +z;_p, and the probability of finding strong evidence in
favor of H, when H, is true is

Pri(Ly/Ly > k) = 1 — &(c/2 + (k) /). (2.2)

It is easily shown that this probability of misleading strong evidence
is the same as the probability of misleading evidence in the other
direction, Pry(L,/L, > k). Similarly, the probability of finding
strong evidence for H, when H, is true is the same as the probability
of finding strong evidence for H; when H, is true, and that prob-
ability is

Pry(Ly/Ly > k) = 1 — d(In(k)/c — ¢/2). (2.3)

Table 2.2 gives the values of expressions (2.2) and (2.3) for selected
values of £ when o = 0.05 and 8 = 0.20 and 0.05.

If the researcher actually wants to be pretty sure (probability at
least 0.95) that the study will not produce strong evidence support-
ing H, when H, is true, then columns 1 and 2 show that for both
B =0.20 and 8 = 0.05 the sample size nyp is adequate. But so are
smaller ones. In fact it is easy to show (Exercise 1.5) that the prob-
ability of misleading evidence, Pri(L,/L; > k), cannot exceed
1 - ®(y/2In(k)) for any choice of n, §;, and 6. For k =8, 16, 32
this bound equals 0.021, 0.009, and 0.004, respectively. That is, the
choice of a reasonable value of k ensures that the probability of
generating misleading evidence is small, less than 0.021 when
k = 8 and 0.01 when k = 16, regardless of n.

But columns 3 and 4 show that the sample size nyp is not adequate
with respect to producing strong evidence in favor of H, when H, is
true. When S is set at 0.20 and H, is true, a sample of size nyp will fail
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to produce strong evidence for H, more than one-third of the time
(column 3). That is, the sample is not large enough that the
researcher can be pretty sure that, if H, is true, the study will pro-
duce strong evidence in its favor. And column 4 shows that when
o = 3 = 0.05, the probability of failing to produce strong evidence
in favor of H, when it is true is greater than 0.15, three times the
value at which the researcher probably thought he was controlling
this risk when he fixed the Type II error probability at 8 = 0.05.

If the study is structured as a Neyman—Pearson testing procedure,
it always leads to a decision, to choose H; or to choose H,. It does
not always lead to strong evidence; in fact, Table 2.2 shows that at
o = 0.05, when either of the two hypotheses is true the study will fail
to produce evidence strong enough to give a likelihood ratio as large
as 8 in favor of one or the other about one-third of the time
(0.342 — 0.019 = 0.323) when 3= 0.20, and about 15% of the
time when 3 = 0.05.

In this example, if either hypothesis is true the probability of
producing strong evidence supporting that hypothesis over the
other one is the same, Pry(L,/L; >k)=Pr(L;/L, > k). To
ensure that this probability is at least 0.95, we need at least
ny = {1.645 + [(1.645)? + 21In(k)]/*}?6? /6* observations (Exercise
2.1). Table 2.3 shows these values for k=8, 16, 32. They are
larger than the value nyp given by the Neyman—Pearson formula
(2.1) with a = 8 =0.05, which equals 10.824 times o”/6. For
instance, to be pretty sure (probability at least 0.95) that we will
obtain strong evidence in favor of the true hypothesis (LR > 8)
we require about two-thirds again as many observations as are
required to achieve Type I and Type II error probabilities of
a = =0.05: n/nyp = 18.191/10.824 = 1.68. Even if we reduce
o to 0.025, so that ayp is the sample size required for a two-sided
Neyman—Pearson test with Type I error rate o = 0.05, formula
(2.1) gives nnp = 12.9960% /62, so that ny /nnp = 1.40. We actually
need 40% more observations.

Perhaps we have chosen the value of k that identifies ‘pretty strong
evidence’ badly. Perhaps k = 8 is more extreme than we realize, and
a more enlightened choice of this critical value, say k = 4, would
produce a sample size n; that agrees with the Neyman—Pearson
value nyp. Is there some value of k > 1 for which #; = nnp? No.
Exercise 2.1 shows that for any specified k& we can make
Pri(L,/L, > k) =Pry(L,/L, > k) =095 by choosing n large
enough, n > ny (k), where the required sample size increases as k
increases. It also shows that for k =1 the required sample size,
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(0.064, 0.064)

(0.05, 0.080)
(0.05, 0.045)
(0.05, 0.025)

9.292
11.175
13.004

(0.016, 0.016)

(0.05, 0.004)
(0.05, 0.002)
(0.05, 0.001)

18.191
20.408
22.557

(0.047, 0.047)

(0.012, 0.012)

16

(0.036, 0.036)

(0.009, 0.009)

32
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np (1), equals the sample size nyp given by the Neyman—Pearson
formula with o = # = 0.05. This sample size is not adequate for
any k> 1. We are not finding that the required sample size ny,
is greater than the Neyman—Pearson value nyp because we are
unwittingly setting our standard too high; nyp is really too small.

If we are willing to settle for a probability as low as 0.80 that the
study will produce strong evidence in favor of the true hypothesis,
column 4 of Table 2.3 shows that we need only 9.29202/6? observa-
tions, about half the number required for a probability of 0.95. This
is still 50% more than the sample size given by the Neyman—Pearson
formula (2.1) with a = 0.05, 8 = 0.20, which is 6.18502/6°

In order to obtain the required sample size, ny(k), from the
Neyman—Pearson formula, that is, to make nyp = n;, we must
choose smaller values of a and (§ than the conventional ones.
Column 2 of Table 2.3 shows the 3 values needed if o = 0.05, and
column 3 shows the common value needed if we set a = 8.

Now suppose that we have done the study, taking the number of
observations nyp given by formula (2.1). Furthermore, suppose that
we use the Neyman—Pearson test procedure to interpret the evidence
in our sample. We perform the test of H; versus H, at level «;
because of the way we chose n, we know the test has the specified
power, 1 — 3. When the test calls for choosing H,, we will interpret
this to mean that the sample represents pretty strong evidence
supporting H, over H; (and vice versa).

We saw in section 2.3 that this interpretation can be wrong, that it
can lead to classifying observations as evidence supporting H, over
H,; (or vice versa) when the opposite is true. But maybe this is not
often the case. Maybe the Neyman—Pearson procedure usually
produces a correct interpretation of the evidence in situations like
the present example, where the sample size is chosen to control o
and S at conventional levels. Let us see.

We will interpret the observations as evidence for H, when the
test rejects Hy, that is, when ni/ 2()‘c —80)/o > z,_,, and as evidence
for H; when this inequality is reversed. When H, is true, how
often will this interpretation be incorrect? From formula (2.2) we
find that

Pri(Ly/Ly < k|n'*(X —6,)/0 > z,_,)
= 1= [1 = ®(c/2+ In(k)/c)]/a (2.4)

(assuming that ¢/2 + In(k)/c is greater than z, _,). This is the prob-
ability, given that H, is rejected in favor of H,, that the evidence
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supporting H, over Hj is not strong. Similarly, the probability, given
that H, is accepted, that the evidence in favor of that hypothesis is
not strong is given by

Pry(Li/Ly < k|n'*(X = 6))/0 < 2z _,)
— 1= [B(c/2 — (k) /) /(1 — )}. (2.5)

These and the corresponding probabilities of misinterpretation
when H, is true are given in Table 2.4 for oo = 0.05 when § = 0.20
and when = 0.05. There we see that if a likelihood ratio of at
least k =8 defines ‘strong’ evidence, then almost two-thirds
(0.625) of the “Type I error’ rate results from rejecting H, when
the evidence in favor of H, is not strong.

Overall, if we think that we have strong evidence in favor of the
hypothesis that is selected by the testing procedure with a = 0.05
and 8 =0.20, Table 2.4 shows that we will be wrong about one-
third of the time: when H, is true we will accept H, 5% of the
time, and Table 2.4 shows that when that happens, the probability
that we will actually have only weak evidence (likelihood ratio less
than k = 8) in favor of H, is 0.625; similarly, we will accept H;
95% of the time, but when that happens, we will actually have
only weak evidence in favor of H; 30.7% of the time. Thus when
H, is true we will misinterpret the evidence a fraction
0.05 x 0.625 + 0.95 x 0.307 = 0.03 + 0.29 = 0.32 (about one-third)
of the time, usually in the direction of thinking that we have
strong evidence for H; when we do not. When H, is true the same
analysis shows that we will misinterpret the evidence about the
same fraction of the time, 0.80 x 0.177+0.20 x 0.906 =
0.14 + 0.18 = 0.32, incorrectly thinking that we have strong evi-
dence in favor of H, (14% of the time) almost as often as we
incorrectly think that we have strong evidence for H;. If we
change 83 so that 8 = a = 0.05 then Table 2.4 shows that, regardless
of which hypothesis is true, we will misinterpret the evidence 14.4%
of the time: 0.05 x 0.772 4+ 0.95 x 0.111 = 0.144.

At the beginning of this section, we noted that strict Neyman—
Pearson procedures are rarely used for interpreting and reporting
scientific data as evidence. Table 2.4 shows that this is appropriate
— Neyman—Pearson procedures should not be used for that
purpose. The more commonly used procedures are discussed
in the next chapter. If they are valid, they must rest on a
different theoretical basis than the one provided by Neyman and
Pearson.
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Table 2.4 Probability that the evidential interpretation of the Neyman—Pearson test result will be incorrect when a = 0.05 and 3

0.05)

(8

PI‘](L]/LZ < klacc. Hl) PI'2(L2/L] < k|rej. Hl) Prz(Ll/Lz < k|acc. Hl)

Pr; (Lz/Ll < klrej. H])

0.906 (0.772)
0.954 (0.871)
0.979 (0.930)

0.177 (0.111)
0.311 (0.170)
0.450 (0.239)

0.307 (0.111)
0.420 (0.170)
0.536 (0.239)

0.625 (0.772)
0.816 (0.871)
0.916 (0.930)

16
32
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2.5 Summary

Neyman—Pearson statistical theory is aimed at finding good
rules for choosing from a specified set of possible actions. It
does not address the problem of representing and interpreting
statistical evidence, and the decision rules derived from Neyman—
Pearson theory are not appropriate tools for interpreting data as
evidence.

Exercises

2.1 Suppose Xi, ..., X, are i.i.d. N(6,¢%) with % known, and con-
sider the two simple hypotheses Hy: 6 = 8, and H,: 6 = 6, + 6.
(a) Derive a formula for the sample size nyp required to make
both the Type I and Type II error probabilities equal 0.05.
(b) Derive a formula for the sample size n; (k) required to make
both the probabilities Pry(L;/L, > k) and Pry(L,/L; > k)
equal to 0.95.
(c) Show that sy (k) > nyp for all £ > 1, and that this remains
true if the probabilities 0.05 in (a) and 0.95 in (b) are
replaced by aand 1 — ¢, forany 0 < a < 1.

2.2 (Continuation of Exercise 2.1)

(a) Show that if H is true then the probability of misleading
strong evidence in favor of H, (L,/L, > k) is greatest
when 7 = 2(0/6)* In(k).

(b) Find the maximum probability in (a).

(c) If H, is true, what is the maximum probability of (mislead-
ing) strong evidence in favor of H;?

(d) For the sample size in (a), what is the power of the most
powerful size-a Neyman—Pearson test of H; versus H,?

2.3 For independent random variables X ~ N(u,1) and
Y ~ N(n,1), consider the ratio § = u/7.
(a) Use the fact that (X —60Y)/(1+6%!/? has a standard
normal distribution to derive a 95% confidence region for 6.
(b) Show that with positive probability the 95% confidence
region will consist of the entire real line (Fieller, 1954).

2.4 Consider a model in which both the sample space and the para-
meter space consist of M points, x,...,xp and 8y,...,0;.
P(X =x;;0;) =« for i=1,..., M, with the remainder of the
probability spread uniformly over the remainder of the sample

space. If «a is less than 1/M, what is the best 100(1 — a)%
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EXERCISES 59

confidence region R(X)? Give a precise interpretation of an
observation X = x as evidence in relation to the hypotheses
Hy,: 6cR(x) and H,,: 0¢ R(x). When o =0.05 and
M =19, is the observation fairly strong evidence supporting
H,, over H ,?




